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1. M O T I V A T I O N  

Let S be a quantum mechanical system in thermal equilibrium, and A be 
one (or a few) of its observables. When other degrees of freedom in S are 
left unspecified, the time evolution (or its suitable modification) A(t) of A 
forms what we might generally define as a stochastic process in quantum 
statistical mechanics. To obtain useful insights, however, this general 
definition needs to be restricted to a narrower range of {S, A }'s that give 
simple, but hopefully rich structures. In the corresponding classical 
problems such rich structures are presented by diffusion processes 
generated from Gaussian white noise through stochastic differential 
equations (SDEs). This work discusses aspects of the quantization of the 
further subclass composed of Brownian motion processes in polynomial 
potentials. 

The research into modeling Brownian motion processes by classical 
mechanical systems was initiated decades ago. 2 Hamiltonian systems are 

Department of Physics, Kyoto University, Kyoto 606, Japan. 
2 Pioneering works related to this research are cited in the bibliographies of Refs. 1~4. 
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known~l 4/with N degrees of freedom composed of harmonic oscillators in 
thermal equilibrium and coupled to a particle in an extra (possibly anhar- 
monic) force field: As N ~  o% this particle realizes the mentioned type of 
Brownian motion if harmonic oscillators tend to form, roughly speaking, 
an elastic string. This particular limit N ~ oo will be called the continuum 
limit; Sections 2 and 3 will give its precise characterization. Ford et al. C31 
advanced a decisive step by quantizing a model system with the particle in 
its own harmonic potential, performing the continuum limit on the 
solution for the particle and deriving the quantized Ornstein-Uhlenbeck 
(Q-OU) process. More recently, the quantization research was resumed (s'61 
by taking the continuum limit Q-OU problem as unperturbed and adding 
perturbations in the generator of the quantum dynamics: The analyses 
culminated in a proof (6'16~ that the perturbed dynamics can be described by 
the same form of quantized SDEs (Q-SDEs) as the corresponding classical 
SDEs, for anharmonic perturbation potentials that satisfy a few bounded- 
ness and differentiability conditions. 

However, the continuum limit Q-OU problem and its generalizations 
involve a few conceptual difficulties that originate in the quantized 
Gaussian white noise/3's 71 (Q-noise, for short). A Q-noise w(t) exists as a 
quasi-free field,(11'121 and makes sense of an observable only after smearing. 
This w(t) the takes position of a random force in a Q-SDE, and its 
presence also deprives the momentum of the Brownian particle of the sense 
of an observable at respective t. This circumstance raises some fundamental 
questions that still seem to lack explicit answers: Is this particle a real 
physical existence, or more pragmatically, what type of quantities should a 
Q-SDE evaluate? 

A way to deal with these points is to go back to finite systems and 
consider the implications of the continuum limit on them in more detail. 3 
These form precisely the aim of this work. We reconsider structures of the 
above-mentioned models, and also look for a representation of the con- 
tinuum limit on these models. The paper obtains the following results. 

1. A class of nonlinear, Langevin-type equations are shown to exist 
as precontinuum limits, giving reduced Heisenberg equations 4 that retain 
the same forms as classical equations of motion. This will be seen to 
suggest the existence of quantum heat reservoirs, with their structures not 
dependent on systems attached to them, as pairs of a quantum Gaussian 
operator process and a dissipation term that are linked together by a fluc- 

3 In this regard, the convergence of the quantum dynamics itself in the continuum limit was 
discussed recently for bounded but not necessarily differentiable potentials. (tT~ 

4 Heisenberg equations for relevant dynamical variables only, other degrees of freedom being 
contracted into a random force and a dissipation term; cf. Sections 2 and 3. 



Multiple Wiener Integrals 1051 

tuation-dissipation relation, and with the former of satisfying the KMS 
property with respect to the time shift. 

2. The Q-noise, which is singular but well-defined, 13'5 7/is shown to 
give a representation of a class of quantum Gaussian processes that include 
noise forces in result 1. This representation is also shown to realize the con- 
tinuum limit on the heat reservoir in a unified and tractable way. 

3. A few special structures are shown to exist in Wick polynomial 
moving averages of the Q-noise, assuring the convergence of some class of 
covariance functions generated from the quantum noise of result 1 in the 
continuum limit. 

These results will clarify the basic mode of existence of a quantized 
SDE in its relation to the classical one and a range of observable quantities 
to be evaluated by a Q-SDE, together with some further perspectives on 
remaining problems and possible extensions. 

Section 2 exposes the classical model and the continuum limit on it. 
The quantization is discussed in Section 3. Structures in the Q-noise and 
the associated Wick polynomials are given in Sections 4 and 5. The general 
framework of a nonlinear Q-SDE will be concluded in Section 6 on the 
basis of these. A few details in the analysis are deferred to Appendices A-C. 

2. CLASSICAL M O D E L S  A N D  THE REDUCED EQUATION 
OF M O T I O N  

Let {Q, P} be the coordinate and the momentum of a particle of mass 
m in a differentiable potential V(Q) and interacting with K harmonic 
oscillators with angular frequencies {o)~ > O; 1 ~< k ~< K}. We consider first 
the Hamiltonian 

H = p 2 / 2 m + V ( Q ) + ~  ~,_= [p~/mk+mkco~(qk--Q)2--hCOk] (2.1) 

and the associated classical canonical equations 

dq~/dt = pk,/m~, dpk/dt = --mke)~[qk -- Q(t)]  (2.2) 

K 

dQ/dt=P/m, d P / d t = - V ' ( Q ) +  ~ mkco~[q~.(t)-Q(t)] (2.3) 
k ~ l  

Let T < 0  denote the initial time; later we let T ~  -oo .  The solution for 
qk(t) is 

qk(t) = qk(T) cos[cok(t -- T)] + (mkco,)-I p~(T) sin[cok(t -- T)] 

f' 
+ co~ s in [c~k( t - s ) ]  Q(s) ds 

OT 
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Partial  integrat ion gives 

f 
t 

rnkco2[q~(t) -- Q(t ) ]  : afk(t) - 7k(t-- S) P(s) ds 
T 

where a > 0 is a constant  to be fixed later and 

7k(V) = (mkco2/m) COS(C~kr) 

f~( t )  = (mko2/a)[q~(T)-  Q ( T ) ]  cos [~ok( t -  T)~ (2.4) 

+ (Ok~a) pk(T) sin[e)k(t-- T)]  

These are subst i tuted back  into (2.3). Then  we have 

dQ/dt = P/m, 

dP/dt= - V ' [ Q ( t ) ] -  y ( t - s )  P(s)ds+a~(t )  (2.5) 
T 

K :t2 

~7('c)= ~, 7k('C)= I_ cos (co ' c )p (~)dm,  
k ~ l  

K 

p(~) = ~ (mk~o~/m) 6 ( ~ -  c0~) (2.6) 
k = l  

K 

# ( t ) =  ~ fk(t) (2.7) 
k ~ l  

In general, ~(r) is a lmost  periodic with a pure point  spectral  density p(~o). 
N o  statistics was involved in this der ivat ion of (2.5). N o w  we pose the 

initial probabi l i ty  density < e  t3H for an inverse t empera tu re  f i > 0 ,  
denot ing an expecta t ion as ( ' " ) c -  This density has factors depending on 
elements of the initial data  D =  {Q(T),  P(T), qk( T ) -  Q( T), pc(T);  
1 ~< k ~< K}, respectively, all with Gauss ian  forms, except the one on Q(T). 
Thus,  the fk(t) are Gauss ian  and mutual ly  independent ,  with 

(fk(t))~.=O, (fk(t)f,(t+v)>~.=bktTk(~)/fla 2 (2.8) 

The stochastic process ~( t )  is independent  of {Q(T),  P(T)} ,  s tat ionary,  
and Gaussian,  satisfying a f luctuat ion-dissipat ion relation, 5 

5 There are ways 13,4.8t to reduce equations of motion (2.2)-(2.3). The present (2.5)-(2.9) are 
after Ref. 4. The general theory of Mori 18~ gives (A. Sakurai, private communication), with a 
particular choice of the projection in the formalism, the same result on (2.1) (2.3) if V(Q) is 
harmonic, but departs from (2.5) otherwise. 14~ 
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( # ( t )  >,. = 0 

(~v(t) #(t + z))~. -  C('r) = m~(r)/fia 2 _= 2 cos coz dV(oo) =- C ( - r )  (2.9) 

V(co) -= ~ m,  co~/2fla 2 = mp(co') dco'/2flcr 2, V(O) = 0 
r <. Co 

The cont inuum limit may  now be defined. Take a sequence for A = 
1, 2 .... of sets {m~A)>0, o)~A)>0; 1 <~k<~K(A)< oo}. Define a Hamil tonian  
H (A) and a step function F(A)(oJ) by replacing {mk, CO~} with {m~ A), co~ AI} 
in (2.1) and in F(co) of (2.9), respectively. Assume that F(A)(co){" myco/~rfia 2 
holds as A ~ o0 at gco e N +, where T is the convergence from below and a 
constant  ~ > 0  is defined by this relation. The sequence {H (a)} of 
Hamil tonian  systems are then named 6 to tend to a continuum. Each H (A) 
gives A-dependent  structures, typically expectat ion functions or functionals 
(EFs)  formed with {Q(t), P(t), ~(z), #(t)}.  Limits for A --+ oo of these EFs 
[and  also of  commuta t ion  relations (CRs) in quan tum mechanics]  form 
the contents of the con t inuum limit. If  mechanical  systems or stochastic 
processes realize these limits of EFs, such systems or processes will be 
called the con t inuum limit of {HIA)}. 

Roughly  speaking, this definition implies 

K(A) 

P(A)(~ = ~, m(A)(C~ 2 k  k ~5(co -- co(k a)) --+ const  
k = l  

as A --. oo 

and assures by (2.9) that #( t )  converges to a Gaussian white noise w(t) 
with (w(t))<.=O and 

(W(t) w(t + r) >~. = 2mya(z)/fia 2 

When  V(Q) is harmonic,  {Q(t), P( t )}  was shown to converge to an O U  
process in this limit./1~) By A-uniform bounds  on the (]Qmp,~])c given by 
the probabil i ty density ocexp(--flH(A)), we further have (see footnote  6): 
Expectat ion values of  polynomials  of  {Q(t), P(t)} of (2.5) for an arbi t rary 
polynomial  V(Q) >~ 0 converge in the con t inuum limit, for T~< t ~< VT' < oo, 

6 Some mathematical restrictions must further be posed. Double limits, in the first of which 
/wIA)(cO) tends to an absolutely continuous Fa(oo) with F~(co)---0 for a)>3f2, and in the 
second (2 --+ so [cf. example below (3.6)], realize them feasibly in a physical way. The first 
limit is ruled by Lemma 3 of Ref. 17 and the second may be treated by (a classical version 
of) Lemma 1 in Section 4. A single sequence fulfilling the restrictions may then be extracted 
from these two as in the text. 
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to those given by the solution of the SDE for the above Gaussian white 
noise w(t), 

dQ/dt = P/m, dP/dt = - V' [Q(t)] - yP(t) + aw(t) {2.10) 

Hereafter we drop the superscript (A), and take a time scale such that 
flcr2=2my in (2.10). By this choice, #(t) becomes a standard Gaussian 
white noise w(t) in the continuum limit F(oo)T o)/2~z, with 

(w(t))c  = 0, (w(t) w ( t + ~ ) > c = 5 ( z )  (2.11) 

in the nonlinear SDE (2.10). Since the frictional force is - fc  dQ/dt = -TP,  
Einstein's relation is independent of m in terms of the friction constant 
K = m  7.  

3. Q U A N T U M  M E C H A N I C A L  M O D E L S  

The Hamiltonian H in (2.1) for K <  oo is now interpreted as a quan- 
tum mechanical operator, with the Schr6dinger representation on 
C~(R,v+ 1) in mind. The stability condition V(Q)>~ 0 is assumed hereafter 
on the potential. Then H is essentially self-adjoint (9~ or defines a unique 
quantum dynamics e x p [ - i ( t - T ) H / h ] ,  and the Heisenberg picture gives 
equations of motion for {qk, Pk; l<~k<~K} that are identical with the 
classical (2.2), because H is quadratic in {qk - Q, Pk; 1 <~ k <~ K}. Therefore, 
the reduced equation (2.5) for {Q(t), P(t)} remains valid in this picture 
irrespective of the form of V(Q), with #(t) and ~(z) given by the same (2.6), 
(2.7), and (2.4). 

There arises, however, one quantal complication. If V(Q) is nonhar- 
monic, the density matrix oce -#H posed on elements of D = {Q(T), P(T), 
qk( T) -- Q( T), pk(T); l<~k<~K} does not assure independence and 
Gaussian character of {qk(r)--Q(T),  p , ( r ) ; l < ~ k ~ K }  by the noncom- 
mutativity of qk( T)-- Q( T) with P(T) and pk(r) .  Thus, #(t) cannot be 
inferred to have Gaussian expectations independently of V(Q). In order to 
circumvent this complication, we adopt a modified model. The harmonic 
Hamiltonian with a certain e) o > 0, 

1 ~ -4- mkcok(q~ Q)2 _ ho)a.] Ho = p2/2 m + mogZQ2/2 + 2 [p2/m;~ 2 _ 
k = l  

(3.1) 

is assumed to govern the dynamics for t < T, and elements of D are posed 
of the statistics of the density matrix ocexp(-/3Ho). The relevant quantal 
expectations will be denoted by ( . - - ) .  For t ~> T the dynamics is switched 
to e x p [ - i ( t -  T)H/h] as before. These devices assure (2.4), (2.6), and (2.7) 
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again for the reduced equation of motion or the quantum stochastic 
integrodifferential equation (Q-SIDE) (2.5) for t~> T, and assign jointly 
(ordered) Gaussian expectations on {v?(t), Q(T), P(T);t>~ T}. 

A point to be stressed is that this model gives Q-SIDE (2.5) with the 
same memory kernel ~ ( r )=  27C(~), where C(r) is the classical equilibrium 
covariance function of the random force, 

( ~ v ( t ) # ( t + z ) ) , = C ( z ) =  e"~dF((o), F ( - c o ) ~ - F ( c o )  (3.2) 
- oc? 

The classical expectation ( . . . ) c  may be taken with any of the two 
probability densities o c e x p ( - f l H )  or exp( - f iHo) .  This structure in 
Q-SIDE (2.5) will again be called the fluctuation-dissipation relation. We 
define, as usual, [ A , B ] ~ A B - B A  and A oB= - (AB+ BA) /2 .  Besides 
[Q(T), P (T) ]  = ih, there hold, by (2.4), (2.6), (2.7), and (2.9), 

[v?(s), # ( t ) ]  = i f lhC'(s-  t) = - e ''~('- '~flho) dF(co) (3.3) 
~oo 

(v?(t))  = 0, ( # ( s ) o # ( t ) ) = C ~ h ( s - - t )  (3.4) 

C~h(r) =- e"~ dF(oJ), #(co) =_ �89 coth(�89 (3.5) 
--ao 

[#(t) ,  Q(T)]  = 0, [#(t) ,  P (T) ]  = - i h C ( t -  T) (3.6) 

together with the ordered Gaussian law for higher order moments of v3(t). 
In order to prepare for the the quantal continuum limit, we now con- 

sider a limit K ~  oe in which a pure point-type F(o)) converges to an 
absolutely continuous but bounded form with ~ rco I dF(co) < oo, giving 
sense to (3.3)-(3.5). We take for convenience the following special 
Hamiltonian H with q0 -= Q and constants rh, (5 > 0: 

1 K 
H=PZ/2m+ V(Q)+-~k21= [~/rh+ffzc52([?~-~k_~)2]-hc~ (3.7) 

where cx is a suitable constant. A linear transformation of {~k,/Sk; 
1 <~k<<.K} brings (3.7) to the form of (2.1), 7 with 

o9~_= co(0) = coc sin(0/2), 0 = ~r(2k- 1)/(2K+ 1) 
(3.8) 

l<~k<~K, e)c = 2(5 

7 Denote  the sum in (3.7) as ~ b / ~  + '~ 'U~' ,  wi th  t deno t ing  t ranspose,  '~ = (/31 ..... /~K) and 

t~ ,=  t ~ _  '~Q=(Y]I -Q, . . . ,  q K - Q ) .  Let S = ( S k t )  be an o r thogona l  mat r ix  tha t  gives a 

diagonal ;2 = tSUS, and define ~ = (c] 1 ..... c]K) = ~S, '~ = '~S. Diagonal elements of .(2 are 
seen to be given by {~ok} of (3.8), and furhter transformations q~ = [lk/Nk, p~ = fikN~, N~ = 
Z~-I Stk yield (2.1). 

822/45/5-6-19 
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Therefore, Q-SIDE (2.5) also holds for {Q(t), P(t)}. A merit of (3.7) is that 
limK_ ~ ~(z) = (rhcoL/m) JI(COLr)/T is known [cf. Ref. 4, Eqs. (1), (13), (24), 
and (26)] with Bessel function J1, a result due also to Sakurai (cf. foot- 
note 5). This gives 

lim dF(co)/dco={(om, C~176 
otherwise (3.9) 

The transition K ~  oo on F(co) thus realizes the irreversibility ~(~) ~ 0 as 
It] ~ oo. 8 The continuum limit on (3.7) is also seen to be realized by a 
further limit co L = 2(5 ~ oo with the mass ratio m/rh = oJL/~ / - ,  c~. 

The quantum dynamics for K =  oo of the lattice system (3.7) may be 
defined as follows. Let d _ = { ~ = ( ~ 0 ,  ~ .... ); ~k~R} be the set of finite 
sequences with ~k r 0 only for k < ~K' < oo. Define 

with ~ 6 d as a test function. We put V(Q) ~ Vo(Q) = mco2oglg/2 for a while, 
and define the would-be EFs and CRs of the infinite harmonic lattice 
{(~)(~, t); ~ d ,  t <  T} as limits for K--* oo of those given by (3.7) for this 
harmonic case in equilibrium. These limits are suggested to exist (as an 
implication of Ref. 3), and we simply assume their existence. Limit EFs and 
CRs should inherit Gaussian (harmonic or free) and various positivity 
properties, together with the KMS property with respect to the time 
evolution described by the infinite system of linear Heisenberg equations as 
the limit K ~  oo of those given by (3.7). The possibility of the reconstruc- 
tion of an infinite harmonic lattice on these EFs and CRs is of no doubt. In 
particular, the modular operator A > 0 should exist, implementing unitarily 
the mentioned harmonic time evolution as, e.g., glk(t) = 
Ai( t -v)gl~(T)A-m-r)  where glk(t)=gl(e(k),t) for s (~) re (k) s (k) ~ with ~ 0 ~ 1 ' " ' 1 '  

slkl=fkt .  Define G = - h l o g A ,  and from t =  T on consider the time 
evolution generated from any self-adjoint extension of H ~ =  
G +  V[glo(T)] -  Vo[glo(T)] as the Hamiltonian. Assuming the absence of 

Ok t T} that domain problems, we obtain Heisenberg equations for {(~k)( ); t > 
correspond to the formal Hamiltonian (3.7) with K =  Go and a polynomial 
V(Q). They should in turn give the reduced Q-SIDE (2.5) for (3.9). 

Though the above argument is only intuitive and leaves some crucial 
points unproved, the interrelation of Q-SIDE (2.5) and (3.7) for K =  oo 
might safely be taken to have been established for F(co) of (3.9). Hereafter 

s By the Riemann-Lebesgue  lernma; (3.9) gives C(z) = O(Iz[ 3/2) for krl ~ oo. 
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we take (2.5) for an arbitrary, absolutely continuous F(co) with 
~ Icot dF(e)) < oo as our starting point, and discuss the convergence of a 
certain range of quantities formed with #(t) in the remaining limit 
F(co)Tco/27r, expecting perturbational construction of solutions of (2.5). 
Since the corresponding C(v) vanishes as ]rJ ~ oe for this type of F(co), 
T--* -oo  may furhter be taken on (2.5) to obtain 

dQ/dt = P/m, f 
[ 

d P / d t = - V ' ( Q ) - 2 ?  C(t-s)P(s)ds+cr~v(t) (3.10) 

which will describe stationary states. In (3.10) #(t) is characterized by 
(3.2)-(3.5). Lewis and Thomas (l~ have shown that (3.2)-(3.5) and 
~-o~ ]col dF(co) < oo specify [including cases of pure point F(co)] exactly a 
class of Gaussian operator processes that have fl-KMS property with 
respect to the time shift vt: # ( s ) ~  #(s + t). The present section indicates, 
therefore, the existence of a class of nonlinear Q-SIDEs satisfying a fluc- 
tuation-dissipation relation (3.2) whose noise force terms fall in the Lewis- 
Thomas class. The KMS property of #(t) will be inferred in the next section 
from a different point of view. 

4. Q U A N T I Z E D  G A U S S I A N  WHITE  NOISE A N D  ITS 
ST R U CT U R E S 

We now construct a useful representation of the quantum Gaussian 
operator process ~(t) of the previous section in terms of Q-noise. 
Heuristically, the Q-noise w(t) is obtained by formal applications of the 
continuum limit dF(~o)--,dco/2rc on (3.3)-(3.5) as the would-be limit of 
~(t). Thus, 

Ew(s), w( t ) ]  = i p h 6 ' ( s  - t)  (4.]) 

(w(s)) = 0  

( w ( s ) o  w ( t ) )  = ~ ( s  - t)  - f ~ 
- -O:3 

e ~'~ ~)#(co) &o/2= 
(4.2) 

Introduce a still formal notation, 

f 
o o  

w(r = r w(t) dt (4.3) 
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with a smearing or test function ~(t), and define Fourier transforms by 9 

S 
sc: 

~(CO) ~ Y [ ~ ( t ) ]  ~- ( 2 g )  -1/'2 e - ' ~ ( t ) d t  (4.4) 

Then (4.1) and (4.2), supplemented with the ordered Gaussian law, take 
the form 10 

[w(~), w(t/)] = 2ia(~, rl), 

( e  re(C)) = e s(~,4)/2, 

f 
o o  

a(~, I/) ~ i ~*(co) H(co) �89 do) (4.5) 
- - c O  

s(~,t l)-  Z*(co) H(CO)It(CO)dco (4.6) 

Quantized Gaussian white noise (Q-noise) w(t) exists precisely that 
gives (4.5) and (4.6) (see Appendix A) .  C6'7'12) Here we need to note simply 
that the Q-noise w(~) is a real, linear mapping from a test function ~(t) in 
the class 

~ -  = { ~ ( / ) ;  ,.,~(CO) = ,.,~* (--CO) E L z [ R ,  ~(o9) de)] } (4.7) 

to a class of self-adjoint operators {w(~); ~ ~ Y }  with a formal notation 
(4.3). 

A utility of the Q-noise is manifested in the following. 

k e m m a  1. Let C(r) be a positive-definite function with the spectral 
decomposition of Bochner, 

I C(r) = e T M  dF(co), ]col dF(co) < 0% F ( - c o )  = -F(co)  (4.8) 
- -  0~3 - - - 0 0  

Assume that F(~o) has a density F'(co)=F'(--co)=dF(co)/dco>~O, and 
define 

F,,zC 

E(co)=_eiX!~ 1/2.1 e-i'~ 
o c  (4.9) 

Z(co)= -X(-~o) :  real and arbitrary 

Then e(z)e 3--, and the moving average ~ 

f 
s o  

w~(t)=-w{g-t[e i'~'E*(co)] } -= c ( t - s )  w(s)ds (4.10) 
of) 

9 Test functions on the real (t-) space are denoted hereafter by the lower case Greek letters 
~(t), r/k(t ) ..... and their Fourier transforms given by (4.4) are represented (often without 
comments) by the corresponding capital letters Z(o~), Hk(oJ) ..... 

z0 The factor 2 on the rhs of [w(~), w(q)] is in accordance with Manuceau. Illl See also Ref. 12. 
11 By the definition w(e) = ~ o o  e(s) w(s) ds', E*(co) is needed in (4.10). 
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satisfies (3.3)-(3.5). The quantal Gaussian stationary process w~(t) has the 
fl-KMS property with respect to the time shift z,w~(s)= w~(s + t). 

Proof. Integrability of {(~t F'(~o) implies E(co)~LZ[~,y(co)dco]. 
Thus, e(r)e~--, and w~.(t) is well-defined. The commutation relation (3.3) 
follows from (4.5), while (3.4), (3.5), the Gaussian property, and 
stationarity are seen from (4.6) with the aid of (4.5). Since r, on w~:(s)= 
~oo e ( s -  s') w(s') ds' acts as the time shift w(s') ~ w(s' + t) on the Q-noise, 
the fi-KMS property of w~(t) is a special case of Proposition A in Appen- 
dix A. | 

If C(r) of (4.8) is identified with that in (3.2), Lemma I asserts that 
w~(t) gives a representation of the processes #(t) of (3.3)-(3.5). Lemma 1 
also enables us to repre,ent the quantal continuum limit # ( t ) ~  w(t) by 
simply taking w~.(t) of (4.10) for #(t) and letting e(r) ~ &(r). The merit of 
this representation is that the limit is realized in one and the same Hilbert 
space, corresponding to the classical representation of stochastic processes 
in a probability space. (~7) The range of operator processes represented by 
w~(t) is narrower than the Lewis-Thomas class t~~ in that F(o) is restricted 
to have a density. The phase factor X(eJ) may play a significant role in 
determining the form of e(~). For example, some form of Z(~o) may give a 
causal e(z) that vanishes for r < 0, by making E(co) analytic in the upper 
half o)-plane. For a Gaussian white noise w(t), (4.10) gives a representation 
of the classical #(t) of (2.9). 

5. M O V I N G  A V E R A G E S  IN T E R M S  OF W I C K  P O L Y N O M I A L S  

We discuss two specific properties of Wick polynomial moving 
averages formed with the smeared Q-noise w~(t) of Lemma 1. The symbol: 
w~(tl)'"w~(tn): will be used for the Wick polynomial of operators 
w~(t~) ..... w~(tn) that have the ordered Gaussian property in their expec- 
tations. It may be defined compactly as follows: 

:w~(tl)-.. w~(t.): 

= {the coefficient o f a l a 2 a n  in 

I l/I I ])} exp ~, a,w~(tk) exp ~_ akw~(tk) (5.1) 
k = l  k 1 

Wick polynomials exist as symmetric operators (see Appendix B). Wick 
polynomials of different degrees are orthogonal with respect to the inner 
product (X, Y ) - ( ) ~ *  Y). Moreover, the totality of them spans the same 
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linear space as does the ordinary  polynomials.  Some relevant details of the 
properties of Wick polynomials  are given in Appendix B. 

T h e o r e m  2. Let ~/(~1,..., z,,) and ~(Zl ..... r , )  for n >~ 1 be real and 
permutat ion-invariant ,  and belong to the class 5P ' (~ ") of tempered dis- 
tr ibutions with Fourier  transforms, 

x e x p [ - i ( o ) l r l +  "' + e ) ~ % ) ]  (5.2) 

that  are polynomial ly  bounded  functions. ~2 Let e ( z ) ~ Y ( R )  [ ~ ( N )  is the 
set of  functions of  rapid decrease].  Define, moreover,  the moving average 
operators  

A(s )= f  ~ f 
~ 

d S l " ' "  d s n ~ ( s - s  1 . . . . .  S - - S n ) : W c ( S I ) ' ' ' W e ( S n ) :  
-- ,vo 

(5.3) 
B ( t ) =  dtl" '"  d t , , r  ..... t - t , , ) :w , ; ( t l ) "w~. ( t , , ) :  

- o o  co 

Then the covariance function C , : ( s - t ) =  (A l* t ( s )  B ( t ) )  converges as a 
tempered distribution in s - t ,  when e(z) converges to 3(r)  in the following 
sense: E ( ~ o ) = ~ l - e ( z ) ]  converges to (2rr) -~/2 pointwise and 3 c > 0  such 
that IE(~o)l < c, X/me ~.13 

The proof  is given in Appendix C together with the limiting form of 
C ~ ( s - t ) .  Since the differentiation of A(s)  of (4.13) involves the transfor- 
mat ion 

Y(q)- -*  ~ [ - 0 r / ( s -  Sl ..... s -  s , ) /Ss]  ~ (~o 1 + "'" + 0%) H(~o, ..... con) 

we have the following result: 

C o r o l l a r y  :3. The statement in Theorem 2 also holds when A(s) 
and B(t) are replaced by dPA(s)/ds p and dqB(t)/dt q, respectively (p, q >/0). 

12 r/(T 1 ..... z,)c,~'([~") holds if and only if q or H(~o I ..... ~on)=-,~-(r/) is a distributional 
derivative of a polynomially bounded, continuous function. Thus, r/and ~ here must belong 
to a subclass of Y'(R'), whose partial characterization is given in Corollary 3. 

1_~ This mode of convergence E(~o)~ (2at)-1/2 will be called the bounded convergence. 



Multiple Wiener Integrals 1061 

The result of the rearrangement of a polynomial of w~(t)'s into Wick 
polynomials of (5.1) depends explicitly on e(r). This is seen by an example, 

w (s) + w (t) ) 

Since a usual polynomial is more easily constructed [say, in solving (2.5) in 
the form of perturbation series for polynomial V(Q), putting aside the 
problem of convergence], the following criterion will be useful: 

L e m m a  4. Let ~(~,. . . ,%) for n~>2 be real and permutation- 
invariant with a continuous Fourier transform 3(col ..... co,,) satisfying the 
estimate 

F2(col ..... co,,)t---<constx I~I (l+[cok[) -1 ~, 
k = l  

3 g > 0  (5.4) 

The moving average operator with e(r)~ 5P(N), 

J i b ( f )  = j d [ l ' "  d t , , ~ ( t - t ,  ..... / - t , , )  w ~ : ( t l  ) �9 ' - w c ( t n )  ( 5 . 5 )  

can be decomposed into a finite sum of Wick polynomials that respectively 
give convergent contributions in forming a covariance function, say 
(A*(s) X(t))  with A(s) of Theorem 2, in the same limit of bounded con- 
vergence E(co) -+ (2~z) ~/2 

The proof is again deferred to Appendix C. In the above statement, 
(5.4) and the continuity of 2(co~ ..... co,,) form a sufficient condition that 
X(t) of (5.5) converges (in the sense of the strong graph limit (91) to a sum 
of well-defined operators (called multiple Wiener integrals(~2~; see Appen- 
dixB) as e ( r )~6(z) .  The continuity of Z is in turn realized by, e.g., 
~(~'1,'", z ' , 7 ) ~ L l ( ~ n )  �9 The restriction may be tight, but Corollary 3 gives 
another. 

Corollary 5. For X(t) of (5.5) in Lemma4 and for any integer 
r > 0, the operator drS(t)/dt r exists and gives convergent covariance tem- 
pered distributions, just as A(s) and B(t) in Theorem 2 for the bounded 
convergence E(co) ~ (2~) 1/2. 

It might he recalled that the assumption e ( r ) e J ( N )  assures the 
existence of drk2(t)/dt r as an operator, as seen by partial integration in 
(5.5). However, it may lose such a sense in the limit e ( r ) - ,  c~(r). 
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6. C O M M E N T S  

Starting from Hamiltonian systems, we have shown the existence of a 
class of SIDEs and corresponding Q-SIDEs as reduced evolution 
equations. Their outstanding features, stated in results 1 3 of Section 1, 
may now be summarized as follows. ( I ) In  both mechanics their forms are 
the same, including the fluctuation-dissipation relation. (I]) Quantum noise 
forces are in the Lewis-Thomas class (m) with the KMS property with 
respect to the time shift. ( I I I )Forms and properties of noise forces and dis- 
sipation terms [which form (quantum) heat reservoirs in pairs] do not 
depend on systems to which they are attached. ( IV)For  infinite systems 
with absolutely continuous F(co)'s, these noise forces admit (by Lemma 1) 
moving average representations in terms of the (quantized) Gaussian white 
noise, the representation kernel being identical in both mechanics. We may 
further point out by (3.10) and (4.9) that the continuum limit, for problems 
with polynomial V(Q)>~ 0 and for absolutely continuous /'(co), is realized 
by taking the smeared noise we(t) in the form of Lemma 1 and performing 
the limit e (~)~  c5(~) on 

dQ/dt = P/m 

dP/dt=- -V'(Q)-27o C(t-s)  P(s)ds+aw~(t) (6.1) 

Since a Brownian particle can have only a finite, even if very large, 
mass ratio m/rh with respect to surrounding particles, the physical reality 
corresponds to Q-SIDE (2.5) or (6.1), where {Q(t), P(t)} are well-defined 
observables, an observable A being defined here as a self-adjoint operator 
with the state vector in its domain (i.e., (A a) < oo), in analogy to square- 
integrable random variables. Our interest is in the covariance functions of 
observables, but the setting of Brownian motion furhter selects relevant 
ones that converge in the continuum limit. Not all covariance functions 
associated with observables of (2.5) or (6.1) can have this property. Con- 
versely, the convergence may arise with observables that lose their sense in 
the limit. As an example, take the classic Q-OU problem for (3.1). The 
solution of (2.5) or (6.1) is then obtained with Laplace transforms 
(Lemma 4 of Ref. 17) as moving averages of Q-noise. It confirms with (4.5) 
and (4.6) the conclusions (31 that Q(t) remains an observable in the con- 
tinuum limit, but the moving average kernel of P(t) leaves the class .Y-- of 
(4.7). Thus, (P2(t)) (hence ([Pn I ) for n > 2) diverges in the limit, imply- 
ing nonconvergence of e i~e for a~ N (cf. the proof of Proposition 6 in 
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Ref. 17). We must admit that P and E =  P2/2m lose their physical relevance 
despite the classical (E),. =- 1/2/3; compare also the arguments in Ref. 3 to 
renormalize E with Section 6 of Ref. 12, which seem inconclusive. We now 
take Theorem 2, with B(t)= :Pn(t): for Q-OU P(t) of (6.1). This B(t) loses 
the sense of an observable as e(r) --* 6(r) by (B.5). But a vast class of A(s) 
gives 

with (Y( t ) )  convergent in this limit. The limit of (Y( t ) )  is a quantity of 
physical relevance that approximates the one for (6.1), and should be 
evaluated by Q-SDE (2.10). However, this relevance seems unsubstantiated 
with the framework of (2.10) alone. These indicate the following cir- 
cumstance: Q-SIDE (2.5) or (6.1) determines what remains significant in 
the continuum limit, Q-SDE (2.10) should in general refer to (2.5) in this 
regard, but possibilities remain to be pursued for Q-SDE (2.10) to have a 
formulation that directly comprises convergent covariance functions of 
such nonobservables as Y(t). 

We have stated at the end of Section 2 that the classical SDE (2.10) is 
an idealization of the physically more realistic (2.5). It is well known that 
SDEs show great utility in constructing diffusion processes, due mainly to 
the powerful existence of stochastic integrals. This circumstance suggests a 
similar utility of Q-SDE (2.10) as an idealization of Q-SIDE (2.5) or (6.1), 
but the possibility of stochastic calculi on Q-noise still has a dim outlook. 
It is known (121 that Wick polynomials of Q-noise become commutative in 
the limit k - , 0 ,  and reproduce multiple Wiener integrals (iterated It6 
stochastic integrals) based on the c-number Gaussian white noise w(t). 
Lemma 1 of Section 4 shows the same basic role of the Q-noise among 
operator Gaussian processes as that of the c-number w(t) among the usual 
Gaussian processes. However, these still remain as isolated analogies. Some 
breakthrough is awaited. 

A P P E N D I X A .  Q - N O I S E  

A cyclic representation of Q-noise, which is always meant in the 
present work, is given by a Hilbert space ~ ,  a vector q5 e ~f~, and a set of 
unitary operators {ei"(~); ~(t)~ J }  on ~ that give the Weyl relation 

c iw(~ )ciw(tl) ~ C iw(~ + q)C - [w(~_ ),w(r/) ]/2 

as well as 
(e i'(r = (qs, eiW(r = e s(r162 
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with the inner product (X, Y) of ~ and with a linear span of 
{e''(~)q~; ~ Y - }  dense in ~ .  Here the test function space Y- is given by 
(4.7) as the broadest class that gives sense to both a(~, t/) and s(~, rl) of 
(4.5) and (4.6). Such a representation exists by the general theory, ll~) which 
is applicable here by/~(co) ~>/~h Io)1/2, which gives 

i~(~, ~)[ ~< [s(~, ~) s(~, ~)] ~/~ , v~, ~ y -  (A.1) 

It is well known and easy to see that (4.5) and (4.6) imply 

<w(~,)...w(~=,+,)>=o 
(A.2) 

<w(*)(~) w(t/)> = s(~, r/)+ i(r(~, 17)- <<~, t/>) 

together with the quasi-free (ordered Gaussian) law of decomposition of 
< w ( ~ ) ' " w ( ~ 2 , ) )  to ordered pair expectations. We now state the following 
result(6.v): 

Proposi t ion  A.  Let the time shift ~, on the polynomials of 
{w(~); ~ e J }  be defined by r,w(s)  = w(s + t) or 

~,[w(~,) '"  w(Q)] 

= w { Y - ~  [ e - " " Z , ( c o ) ]  } - .  w{~-'[e-"~ (A.3) 

Any polynomial of Q-noise has the/%KMS property with respect to r,. 

The proof is sketched to make the paper self-contained. By definition, 
r, respects the algebraic structure of a polyomial of Q-noise operators. The 
quasi-free law with (A.2) implies that q) is z,-invariant, (45, z,J(45)= 
(45, X~),  for any polynomial Y of Q-noise. Denote J((0) = w(~) and Y(t) = 
r,w(r/) for ~, r/e g .  The following hold: 

f ( t )  = (n ,  X(O) Y(t)s 

= 2"(co) H(co)[/~h Icol/(1 - e-~h I'l'h)] 
o o  (A.4) 

X C i~)[t- i f lh( l+signuJ)]  do) 

F(t + ifih) = (f2, Y(t)  )((0)s 

By the uniform convergence of the integral in (A.4) with respect to t, F(z) 
is continuous for 0 ~< Im z <~ fih and analytic in the strip 0 < Im z < fib. This 
proves the fl-KMS property of any polynomial of {w(~);#~3--} with 
respect to r,, by the quasi-free law of decomposition of expectation values 
to those of pairs. 
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A P P E N D I X  B. W I C K  P O L Y N O M I A L S  A N D  M U L T I P L E  
W I E N E R  INTEGRALS 

The Wick po lynomia l  {~3 ~51 (5.1) is defined more  explicitly below. 

Def in i t ion B.1. Let ~, . . . ,  ~m~3-- be arbi t rary,  and define 

Go(c) - c, Vc ~ 

G. . (~_142""g , , , )  

---:w(~,) w ( ~ ) " "  w(~m): 

[m/2] 
--W(~,)W(49""W(4m)+ ~ ( - - l )  ~ 

p ~ l  

• 2 
all ways of taking p pairs 
i(l ) < .j(l ),..., i(p) < j(p) 

from { 1,... m} with the remainder 
k ( 1 ) < k ( 2 ) <  .-. <k(m--2p) 

)'(( I-I ~ i (q ) '  4i(q)~) W(~k(l))' ' '  W(~/,(m 2p)) ,  
\ q = l  

m ~ >  I ( B . 1 )  

For  ( ( . . . )~ ,  see (A.2). The following propert ies  are well known.  

P r o p o s i t i o n  B.2.  (A) G,,(~_j . . .~,, ,) is a symmetr ic  opera to r  on the 
domain  ~r with 

G~(~{1/"  " " 4~t,,,I) = G.,(41 " ' " 4,,,) (B.2) 

where ~ is the total i ty of  po lynomia ls  of  w(~) (~ ~ J )  and {~z(1),..., rr(m)} 
is any pe rmuta t ion  of { 1 ..... m }. 

(B) Or thogona l i ty  holds with Vr/~,..., r/,, ~3--, 

�9 {*) . ,- 
( G , ,  (4, "q , ,~ )G , , ( q l . - ' r / , , ) )  =c~ .... 

[Tr(l l,...,~(mtl k = 1 

Let { J ,  s} denote  the real Hilber t  space J equipped with the inner 
product  s(~, r/) of  (4.6). Let ~ - ( ~ ) m  denote the symmetric ,  m-fold tensor  
p roduc t  Hilber t  space 14 constructed with {3--, s}. Let {r k =  1, 2,...} 

14 Since s(~, r/) is diagonal in the frequency space, an element of ~(~.m| is a usual symmetric 
f u n c t i o n  2 ( m  I ..... r = ~,*( -o91 ..... --(Orn) ~ L2[[~ m, fl(O)l)'"" fl((orn) dO)l. .  d o . , ] .  
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be an orthonormal basis of ~ ( Y ) .  Any ~ e g  | may be expressed as 
follows by its Fourier transform: 

K K 

~(o)1 ..... tom)= lim ~, -"  ~ c [ k ( 1 ) . " k ( m ) ]  
K ~  oo k(1)  = 1 k(m) = 1 

x f i  ~kU)(o)l) (B.3) 
l = l  

where e lk( I ) . . ,  k(m)] is a real coefficient. Define 

K K 

om(~(")) - ~ . . .  ~ c [ k ( l ) " ' k ( m ) l G m ( r  (B.4) 
k ( l ) =  1 k ( m ) =  l 

We quote the following result, ('2) which extends the algebraically defined 
Wick polynomials to a continuum ~| of kernels ~(tx,..., t~). 

P r o p o s i t i o n  B.3. For any ~ e g  Ore, the strong graph limit (9) 
K--* oo of Gm(~ (x)) of (B.4) exists, especially on respective vectors of s~'Q, 
and defines a symmetric, closed operator on ~ to be denoted Gm(~), the 
orthogonal polynomial or the multiple Wiener integral of mth degree based 
on the Q-noise w(t). There holds 

(G~7(~) d; , , (~))= ,5,,,,,m! ((~, ~ );, . . . .  v r l e J  |  

{(~, r/}},,, - do), '- '  do)m-=-*(o)l ..... o)m) H(o), ..... tom) 
--oo oo 

(B.5) 

• l~l [~(o)~)- �89 
k 1 

S ( ( 3 )  1 , . . . ,  ( D m )  ~ ~ ( t '  l , . . . ,  tin) 

A P P E N D I X  C. P R O O F S  OF T H E O R E M  2 A N D  L E M M A 4  

Proof of Theorem 2. Let J be Schwartz's space of rapidly decreas- 
ing functions and p(s)~ 5 P be arbitrary. By (5.3) we have 

I ~ p(s) A(s) ds 
--oo 

= (2~)(~ + ,)/2 G~[R(O), + . . .  + con) H(o)l,..., o)D E(O) , ) . . 'E (~oD]  

B(t )  = (2re) "/2 G n { e x p [ - - i ( o ) ,  + ""  + c o , k ]  

X Z ( ( D , , . . . ,  COn) E ( O I ) ' " E ( ( J ) n )  } 

R(o)) = g [ p ( s ) ]  
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These and (B.5) give 

foo dsp(s)(A(*)(s) B(t)) 
- - o o  

= n !  (27r) "+s/2 dcos "'" dco~ 
- - o o  - - o o  

x {R(co 1 + "'" +co , ) exp [ i ( co ,  + .-. +co,,)t]}* 

• H*(CO s ..... co,,)Z(cos,... , co,) fi IE(co012EU(co~)-J/~hco~] (C.1) 
k = l  

This proves the form <A{*}(s)B(t)> : C~(s-t). By the estimate 

1 ~ c o n s t x ( l + l c o ! ) e  -phJ~l, co>_-0 
0 < l~(co) - ~  flhco <~ (eons t  x (1 + 1o9[ ). co < 0 

w e  need only to show that the following integral exists, converges as 
E(co)--, (2~z) -I/2 boundedly,  and converges to zero as R(co)-~ 0 in 50: 

0 0 co ~ k 

- - : : o  - - o o  l = 1  

x FR(-cos  . . . . .  c o , + c o l +  " +co;, ~)1 

! t x Ill(cos,-.., cok, cos ..... co,_~) 

n - - k  

x E(COl)'"E(co'n_,~:)J 2 1-] (1 + Ico;I) 
l = l  

CO~ x e x p [ - f i h ( c o ' s +  "'" + n - ~ ) ]  

k = 0 ,  1 ..... n. Denote  c o = - ( c o ~ + - "  +cok), c o ' =  cos+' "'" +co'n-k- Since 
]H[ is polynomial ly  bounded,  we have 

foO 0 IIk(P)l -~ const  x de) dco' 

• (1 +co) ' (1  +co ' ) "  IR(co ' - co) l  e ~ " '  

~< const  x d(co' - co) do) e ~ho. 
0 

x (1 + c o +  I c o - c o ' l ?  IR(co ' - co ) l  ( c 2 )  
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The rhs converges by R ( o ) ) e 5  p. This proves the integrability. The con- 
vergence for E(co)~(2~)  ~/2 follows by the dominated convergence 
theorem. That I k ( p ) ~  0 for p--* 0 in 5 P is manifest by (C.2). | 

P r o o f  o f  l_emma 4. Let ~(r~,...,r.) have the property stated in 
Lemma4;  (5.4) implies ~ e g  | Definition (B.1) at once gives the 
following reduction formula(la): 

f~ f~ d r 1 " ' "  d G  ~ ( t  - t 1 , . . . ,  t -  t n )  W s ( t l ) ' ' ' W a ( t n )  

= dr1"'" d , ~ ( t - t l , . . . ,  t - t n ) : w ~ ( t l ) ' " w ~ ( G ) :  

- dtl "'" dt,,_ 2k ~ ( t  - tl,..., t - t,_2k) 
k = l  --oo --o0 

X w~( t , ) ' "W~( t , ,  2k) 

~k(~l ..... ~,, ~ )  

-(-1)~{n!!/(n-Zk)!!] d~', . .  d% 

k 

l = 1  

= (2~)-(n 2~)/2 & o r " "  de),,_2k2k(O~ 1 ..... 0)~ 2k) 
o o  - c o  

xexp(icolr 1 + - ' '  +ico~ 2kr~-2k) 

2 , ( c o  ~ ,..., co~_ 2 , )  

= ( - - l ) k [ n [ ! / ( n - - 2 k ) ! [ ]  de) i . . .  do); 

. . . .  - -  (J') k ) • ~(o31,..., CO,_2k , e91, - -e)] ,  toe, --C02,... , egk, 

k 

X I-[ [/~(~;) -- �89 IE((.a;)[ 2 (C.3) 
l = 1  

For each k, ~k(CO1,'",e~ 2k) exists by (5.4), and converges in 
~ ( g - |  as E(oa;)~ (2x) -1/2 boundedly. Proposit ion B.3 proves the 
assertion of Lemma 4. | 
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